Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide

Pedram Abbasi,† Mohammad Asadi,† Cong Liu,† Soroosh Sharifi-Asl,† Baharak Sayahpour,† Amirhossein Behranginia,† Peter Zapol,‡ Reza Shahbazian-Yassar,† Larry A. Curtiss,‡ and Amin Salehi-Khojin*,†

†Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
‡Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

Supporting Information

ABSTRACT: Electrocatalytic conversion of carbon dioxide (CO\textsubscript{2}) into energy-rich fuels is considered to be the most efficient approach to achieve a carbon neutral cycle. Transition-metal dichalcogenides (TMDCs) have recently shown a very promising catalytic performance for CO\textsubscript{2} reduction reaction in an ionic liquid electrolyte. Here, we report that the catalytic performance of molybdenum disulfide (MoS\textsubscript{2}), a member of TMDCs, can be significantly improved by using an appropriate dopant. Our electrochemical results indicate that 5% niobium (Nb)-doped vertically aligned MoS\textsubscript{2} in ionic liquid exhibits 1 order of magnitude higher CO formation turnover frequency (TOF) than pristine MoS\textsubscript{2} at an overpotential range of 50–150 mV. The TOF of this catalyst is also 2 orders of magnitude higher than that of Ag nanoparticles over the entire range of studied overpotentials (100–650 mV). Moreover, the in situ differential electrochemical mass spectrometry experiment shows the onset overpotential of 31 mV for this catalyst, which is the lowest onset potential for CO\textsubscript{2} reduction reaction reported so far. Our density functional theory calculations reveal that low concentrations of Nb near the Mo edge atoms can enhance the TOF of CO formation by modifying the binding energies of intermediates to MoS\textsubscript{2} edge atoms.

KEYWORDS: electrocatalysis, CO\textsubscript{2} reduction reaction, transition-metal dichalcogenides, atomic doping, ionic liquid

The advancement in the electrocatalysis science could provide an efficient way to convert carbon dioxide (CO\textsubscript{2}) into hydrocarbon fuels that is known as the most promising approach to reach to the carbon neutral cycle.1–3 Recently, the potential for transition-metal dichalcogenides (TMDCs) to serve as highly efficient catalysts for electrocatalytic reduction of CO\textsubscript{2} has been demonstrated by our group.4,5 The edge states of TMDCs in contact with ionic liquid (IL) electrolytes offer a paradigm for CO\textsubscript{2} reduction, which takes advantage of materials with low work function, significant overlap of the d-band partial density of states with the Fermi energy, and an electrolyte “solvent” that carries CO\textsubscript{2} to active site efficiently.5 This unique combination of TMDCs and IL demonstrates remarkable catalytic activity for CO\textsubscript{2} reduction reaction, far exceeding the performance of state-of-the-art metal catalysts.

Unlike noble metals the rate-determining step of CO\textsubscript{2} reduction reaction for TMDCs/IL catalytic system is CO* desorption rather than COOH* formation5 that hinders the CO formation turnover frequency (TOF). In this study, we investigate whether modifying the electronic structure of active edge atoms within an IL environment could tailor the binding strength and desorption rate of key intermediates during the CO\textsubscript{2} reduction reaction. An optimal condition can potentially lead to a Sabatier effect resulting in an increased TOF.6–8

One promising approach to tune the electronic properties of edge atoms is to use proper dopants near the edge structures. Our previous studies showed that the Mo edge states are mainly responsible for the high catalytic performance of bulk MoS\textsubscript{2} in the IL electrolyte. Thus, increasing the number of these active sites could lead to an enhanced activity of the catalyst, meanwhile allowing to precisely study the effect of doping on the edge structure rather than basal plane of MoS\textsubscript{2}.

Received: September 21, 2016
Accepted: December 7, 2016
Published: December 7, 2016
In this study, we selected vertically aligned MoS2 (VA-MoS2) as a model structure with nanometer level thickness (∼20 nm) and surface area mainly covered by Mo terminated edge atoms.9–11 Niobium (Nb) and Tantalum (Ta) were selected as dopants since they can form NbS2 (TaS2) covalent bonds within the MoS2 lattice in the presence of sulfur atoms without altering its lattice parameters.12 Substitutional doping is also feasible in this structure since the Mo, Nb, and Ta oxidation states in the corresponding sulfate structures are identical.13 NbS2 and TaS2 have lattice parameters that are quite similar to MoS2. For instance, the in-plane lattice constants of NbS2 and TaS2 sheets are only 0.15 Å longer than those of the MoS2.13,14 However, their electronic properties are relatively different from those of MoS2 due to the different number of valence electrons for the Mo and Nb (Ta) atoms. Nb and Ta possess one valence electron fewer compared to Mo, which makes the valence band of NbS2 and TaS2 half filled.12,14 Hence, they exhibit a metallic behavior, as opposed to the semiconducting behavior of MoS2. It is hypothesized that this metallic behavior will enable NbS2 and TaS2 doping to enhance the Mo active edge atoms for CO2 reduction.

RESULTS AND DISCUSSION

Synthesis and Characterization Methods. To test this hypothesis, VA-MoS2 and Ta and Nb-doped MoS2 catalysts (Mo1−xMxS2, M = Nb and Ta) with different doping levels were synthesized using chemical vapor deposition (CVD) method.15–17 In brief, a thin layer of molybdenum (2.5 nm) was deposited on the glassy carbon substrates by electron beam evaporation using metal targets. Different thicknesses of Nb and Ta dopant metals (ranging from 0.5 to 5 nm) were also deposited on the top of the first layer of Mo, followed by another 2.5 nm of Mo on the top of the film in order to achieve a sandwich-like film. The thickness of the samples was confirmed by atomic force microscopy (AFM) after each deposition. Next, the metal film substrates were sulfurized in 850 °C for 15 min in 5 mTorr by CVD method. Finally, the growth chamber was cooled down to ambient temperature under the protection of Ar gas flow, and samples were taken out for further experiments (SI, Section S1). Characterization results presented in Figure 1 are for the VA-Mo0.95Nb0.05S2 structure that exhibits the best CO2 electrochemical performance. Characterization results for other synthesized samples are presented in (SI, Sections S2–S5).

Figure 1A shows the filtered Cs corrected (spherical aberration corrected) high-angle annular dark-field (HAADF) image, resolving atomic structure of a VA-MoS2 nanosheet with a hexagonal structure (P63/mmc) in [100] zone axis. CVD grown VA-MoS2 structures are single crystalline nanosheets (∼20 nm in diameter), aligned perpendicularly with respect to the substrate. The RGB image (Figure 1B), which is constructed from HAADF and annular bright-field (ABF) images, demonstrates the grown structure’s atomic arrangement with heavy (Nb/Mo) and light (S) elements. This result is in complete agreement with the atomic model of hexagonal MoS2 extracted from Crystal Maker software.4,18 In the RGB image, the signal from heavy elements (Nb/Mo) is stronger compared to S element. One should note that atomic resolution HAADF images cannot differentiate Nb and Mo due to their close atomic number of 41 and 42, respectively. Therefore, to analyze the distribution of the element Nb in the VA-Mo0.95Nb0.05S2 structure, energy dispersive spectroscopy (EDS) mapping was performed on the same area to verify the homogeneous distribution of Nb in the sample (Figure 1C). Based on atomic resolution observations and EDS elemental mapping results, CVD grown nanosheets of VA-Mo0.99Nb0.01S2 are highly crystalline and preserve the original hexagonal structure of MoS2 with 0.6 nm interlayer distance. As such, Nb dopants are successfully inserted into the MoS2 crystalline structure without
introducing structural modification and/or defect formation in the structure. Raman spectroscopy was also employed to compare the structural properties of the pristine VA-MoS$_2$ and VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ samples (Figure 1D). The Raman spectrum of Mo$_{0.95}$Nb$_{0.05}$S$_2$ does not exhibit any major differences from that of the pristine VA-MoS$_2$. Two identical peaks at 384 and 409 cm$^{-1}$ confirm that the VA-MoS$_2$ structure is not considerably affected by dopants. However, a closer look reveals small differences between the pristine and doped structure. A shift in the characteristic A$_{1g}$ band by \sim1 cm$^{-1}$ from the VA-MoS$_2$ (409 cm$^{-1}$) reveals a slight effect of doping on the c-axis vibration mode.

X-ray photoelectron spectroscopy (XPS) has been carried out to provide an exact stoichiometric ratio and binding energy shift of doped elements in all of the synthesized samples. Figure 1E shows the results of Mo 3d and S 2s core levels of VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ and pristine VA-MoS$_2$. Binding energies (BEs) of all peaks were calibrated on the C\(_{1s}\) bond of C\(_{1s}\) at 284.8 eV. In the case of Mo$_{0.95}$Nb$_{0.05}$S$_2$ structure, we observed a distinguishable shift toward lower binding energies only in Mo 3d spectra, but not in C\(_{1s}\) or O\(_{1s}\) spectra. This shift is a strong evidence of the substitutional doping of Nb atoms into the MoS$_2$ structure as a result of p-type doping. Figure 1F also shows the Nb 3d core levels of Mo$_{0.95}$Nb$_{0.05}$S$_2$. The peaks on 204.5 and 207.2 eV in Nb 3d spectra are attributed to the reduced Nb atoms in the MoS$_2$ structure, and two other peaks on the binding energies of 201.2 and 210.7 eV correspond to elemental Nb and Nb$_2$O$_3$ on the surface that are in agreement with previous reports on fullerene-like (IF) Nb$_x$Mo$_{1-x}$S$_2$ nanoparticles.

Electrochemical Experiments. The CO$_2$ reduction performance of the synthesized catalysts was studied by different electrochemical experiments. Cyclic voltammetry (CV) experiments were performed inside a two-compartment three-electrode electrochemical cell at the potential range of $+1.0$ to -0.8 V vs reversible hydrogen electrode (RHE, all potentials in this study reported based on RHE) with 20 mV/s scan rate. Previously, we uncovered that MoS$_2$/IL catalytic system is a proton limited system due to the high density of d electrons on Mo edge atoms. Thus, all experiments were performed using CO$_2$ saturated electrolyte composed of 50 vol % 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF$_4$) and 50 vol % of deionized water that exhibits the lowest pH (3.2) among different concentrations of water/IL. This composition of the electrolyte provides the highest concentration of protons in the system resulting in the maximum CO$_2$ reduction rate. Figure 2A shows the CO$_2$ reduction current density as a function of dopant percentage for Nb-doped and Ta-doped MoS$_2$ samples. In particular, current densities of 98, 82, 71, and 68 mA/cm2 were obtained for doped samples of VA-Mo$_{0.97}$Ta$_{0.03}$S$_2$, VA-Mo$_{0.94}$Ta$_{0.06}$S$_2$, and VA-Mo$_{0.91}$Ta$_{0.09}$S$_2$, respectively.

Figure 2. CO$_2$ reduction performance of pristine and doped MoS$_2$ samples. (A) Current density as a function of dopant percentage for Nb-doped and Ta-doped MoS$_2$ samples. (B) CV curves for Ag NPs, VA-MoS$_2$, VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$, and VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ in CO$_2$ environment. (C) CO and H$_2$ Faradaic efficiency (FE%) at different applied potentials for VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$. (D) CO formation partial current density for Ag nanoparticles, VA-MoS$_2$, and VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$. **Environmental**: DOI: 10.1021/acsnano.6b06392 ACS Nano XXXX, XXX, XXX–XXX.
Mo$_{0.97}$Ta$_{0.03}$S$_2$, and Ag nanoparticles (Ag NPs) in the 50 vol % Mo$_{0.95}$Nb$_{0.05}$S$_2$ is 19 mA/cm2, which is more than 4 and 70 \times 10$^{-6}$ oxidation state from its distinguishable TaS$_2$ (IV) reference peak at 23.60 eV by \sim0.9 eV. We speculate that this change in the binding energy of Ta atoms with the host structure could result in a deviation from the optimal electronic properties of doped structure that may underperform the electrocatalytic activity for CO$_2$ reduction reaction.

Based on the CV results (Figure 2A), the rest of this study is mainly focused on the Mo$_{0.95}$Nb$_{0.05}$S$_2$ catalyst which exhibits the best electrocatalytic performance for CO$_2$ reduction among all studied catalysts. In Figure 2B, the activity of Mo$_{0.95}$Nb$_{0.05}$S$_2$ catalyst was compared with pristine VA-MoS$_2$, VA-Mo$_{0.97}$Ta$_{0.03}$S$_2$, and Ag nanoparticles (Ag NPs) in the 50 vol % EMIM-BF$_4$ IL. The CV results indicate that at the potential of -0.8 V, the current density of Mo$_{0.95}$Nb$_{0.05}$S$_2$ (237 mA/cm2) is approximately 2 and 50 times higher than that of VA-MoS$_2$ and Ag NPs, respectively. The inset of Figure 2B also shows the current density of the studied catalysts at lower potentials (0 to -0.2 V vs RHE). At -0.2 V, the current density of Mo$_{0.95}$Nb$_{0.05}$S$_2$ is 19 mA/cm2, which is more than 4 and 70 times higher than that of VA-MoS$_2$ (4.5 mA/cm2) and Ag NPs (0.26 mA/cm2), respectively. Detail of CV experiments are presented in (SI, Section S6).

The selectivity of Mo$_{0.95}$Nb$_{0.05}$S$_2$ was also studied using gas chromatograph (GC) equipped with a thermal conductivity detector (SI, Section S7). The overall Faradic efficiency (FE) measurements indicate that this catalyst produces a tunable mixture of CO and H$_2$ ranging from 12% to 82% of CO formation at the range of studied potentials −0.16 to −0.8 V.

Figure 2D shows the CO formation partial current density of the catalysts which is defined as CO formation FE% multiplied by the CO$_2$ reduction current density. As seen from Figure 2D, the CO formation current density of Mo$_{0.95}$Nb$_{0.05}$S$_2$ has been improved by an order of magnitude at the low overpotentials of 0−150 mV. VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ catalyst also exhibits approximately 2 orders of magnitude higher catalytic activity over Ag NPs at the all range of overpotentials. Our measurements at the potential of -0.8 V indicate the formation rate of 2.23 \times 10$^{-8}$ and 1.98 \times 10$^{-9}$ (mol/min$^{-1}$ cm$^{-2}$) for CO and H$_2$, respectively.

Next, the CO formation TOF of the catalysts was calculated from the capacitive method27 in which the activity of the catalysts is normalized based on the number of active sites. We measured the double-layer capacitance (C_d) and calculated the roughness factor (RF) to obtain the number of active sites for each catalyst (SI, Section S8).28 Our measurements show a C_d of 4.18, 2.74, and 3.71 mF/cm2 for VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$, VA-MoS$_2$, and Ag NPs resulting in 8.06 \times 1016, 5.28 \times 1016, and 4.44 \times 1017 number of active sites, respectively. The results indicate a 1.5-fold increase of the number of active sites in the surface morphology of the pristine MoS$_2$ catalyst as a result of Nb doping. This is consistent with AFM results in which \sim2 times more roughness (RMS) was observed for VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ compared with VA-MoS$_2$ (SI, Section S5).

Figure 3 shows the calculated CO formation TOF of these catalysts as well as Ag NPs. Results indicate that MoS$_2$ exhibits approximately 1 and 2 orders of magnitude higher CO formation TOF at low overpotentials (100−300 mV) than pristine VA-MoS$_2$ and Ag NPs, respectively. For instance, at the overpotential of 100 mV, TOF values of 0.36, 0.033, and 0.0012 S$^{-1}$ have been calculated for VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$, VA-MoS$_2$, and Ag NPs, respectively.

We also studied the CO formation onset potential to obtain a better perspective on catalytic performance of VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ and a criteria to compare this catalytic system with state of the art catalysts for CO$_2$ reduction reaction (CO$_2$ RR). In this context, in situ differential electrochemical mass spectrometry (DEMS) was used to measure the onset potential of CO$_2$ reduction reaction. To increase the accuracy of the measurement, the experiments were performed in a pure IL EMIM-BF$_4$ to eliminate possible effects of hydrogen evolution reaction. The potential was swept between +0.6 and -0.8 V vs RHE inside 50 vol % EMIM-BF$_4$ and 50 vol % water.

Figure 4. Differential electrochemical mass spectrometry results. CO partial pressure vs applied potential for VA-Mo$_{0.95}$Nb$_{0.05}$S$_2$ during (A) the CV inside pure IL (EMIM-BF$_4$) and (B) CA experiment at the potential of -0.8 V vs RHE inside 50 vol % EMIM-BF$_4$ and 50 vol % water. Insets shows the corresponding CV and CA results.
This clearly indicates that VA− following the CV plot trend. The recorded onset potential of pressure variation of CO increases with the applied potential as the Mo1 potential (estimated from the reaction free energy of the fi rst intermediate, COOH*). This would engender a higher overpotential (estimated from the reaction free energy of the rate-limiting electrochemical step) than MoS2, in which the formations of COOH* and CO* are both exergonic. However, MoS2 has a stronger binding with the product, CO, which could slow down CO desorption (CO* → CO + *) and, thus, decrease the turnover. On the other hand, doping Nb atoms near the Mo edge of MoS2 (Figure 5, Mo1−xNbS2 configurations 1 and 2) would decrease the binding strength between the Mo edge and CO, while keeping the formation of COOH* and CO* exergonic. This suggests that Nb-doped MoS2 could lead to a faster turnover for CO desorption than pure MoS2. This result can explain the lower onset potential of CO formation in Nb-doped MoS2 compared to the pristine structure. The trend of CO binding strengths can be attributed to differences in the electronic structures of the systems. The evidence for this is the density of states of the d orbitals of the edge metal atoms (SI, Figure S12 and Table S4). Our calculations show that the d-band center of Nb in NbS2 is 0.27 eV, while that of Mo in MoS2 is 0.33 eV. Doping Nb into the near-edge of MoS2 results in the shift of the edge Mo d-band center toward a less negative value (−0.29 eV), which leads to a weakened binding of CO. However, higher doping concentrations of Nb may also have an opposite effect on the catalytic performance due to the increased work function of Mo1−xNbS2 at high Nb concentrations, which could lead to poorer electron-transfer properties for the electrochemical reduction of CO2. These two competing effects of Nb as a dopant may account for the dependence of the experimental results on the amount of dopant, i.e., improved catalytic performance of MoS2 at low Nb doping concentrations (<5%) and decreased performance at a higher Nb doping concentration (>5%). The DFT results for Ta-doped MoS2 (SI, Figure S13) suggest that the doping of Ta into the second Mo row of MoS2 could lead to an unfavorable reaction pathway, i.e., the formation of COOH* becomes endergonic. Although pure TaS2 seems to have reasonable reaction pathways, the higher work function of this material (5.5 eV compared to 5.0 eV of MoS2) would still be a drawback for its electron-transfer property. Thus, the DFT calculations showed that unlike Nb-doped MoS2, Ta-doped MoS2 is not likely to...
have a good “trade-off” effect between the reaction energetics and the work function.

CONCLUSIONS

In summary, using CVD method, we synthesized VA-MoS$_{2−x}$ (M = Nb and Ta) structures and tested their electrocatalytic performance for CO$_2$ reduction reaction. We found a volcano-like trend for the catalytic performance of VA-MoS$_{2−x}$-TMDCs with the highest CO$_2$ reduction activity for VA-MoS$_{2−x}$-Nb, S$_2$. The CO formation TOF of this structure indicated 1 order of magnitude higher overall performance compared to pristine VA-MoS$_2$ in the range of 50–150 mV overpotential. The CO formation TOF of this catalyst was also 2 orders of magnitude better than Ag NPs catalyst over the entire range of overpotentials (0–650 mV). Moreover, this structure showed the lowest CO$_2$ reduction reaction onset overpotential (31 mV) measured by in situ DEMS. However, our results showed negative effect of doping on the catalytic performance of all studied Ta-doped VA-MoS$_{2−x}$-Ta,S$_2$ structures. This study indicated that the presence of proper dopants in the structure of MoS$_2$ can significantly improve the catalytic performance of MoS$_2$. The ability to embed the dopants into the atomic structure of the catalysts could open a promising route to enhance the catalytic performance of the edge atoms by modifying their electronic properties.

METHODS AND EXPERIMENTAL SECTION

Material Synthesis. Vertically aligned pristine, Ta and Nb-doped MoS$_2$ catalysts were synthesized using chemical vapor deposition (CVD) method. Substrates (glassy carbon) were thoroughly cleaned by rinsing in acetone, methanol, and isopropanol (IPA) solvents, sequentially followed by drying in a nitrogen flow. Electron beam evaporation (Varian Evaporation System) was used to deposit different thicknesses of metals (Mo, Nb, and Ta) on the substrates using metal targets (Purchased from Kurt J. Lesker). Metal deposited substrates were loaded in the center of a three-zone furnace (MTI Corp. model OTF-1200X) with precise thermometer and gas flow meters. The sulfur precursor (Sigma-Aldrich) was placed in the first zone of the chamber where the maximum temperature reaches to 200 °C. The center of the furnace was heated to 850 °C in 60 min and kept constant for next 15 min to activate the metal surface for sulfurization process. Argon (Ar) gas was continuously flowed (200 sccm) during this growth process. Finally, growth chamber was cooled down to ambient temperature under the protection of Ar gas flow, and samples were taken out for further experiments.

The Ag NP solution was made by mixing 10 mg of silver nanopowder (>100 nm diameter, Alrich) with 600 μL of ultrapure water, 600 μL of isopropyl alcohol, and 10 μL of 1100EW 5% Nafion solution (DuPont). The mixture was then coated on glassy carbon after 3 min of sonication.

X-ray Photoelectron Spectroscopy (XPS). XPS experiments were carried out using a Thermo Scientific ESCALAB 250Xi instrument. The instrument was equipped with an electron flood and scanning ion gun. All spectra were calibrated to the C 1s binding energy at 284.8 eV. To quantify the atomic concentration of each element, all data have been processes by Thermo Advantage software.

Scanning Transmission Electron Microscopy (STEM). Atomic resolution imaging and EDS analysis were performed using an aberration corrected JEOL ARM200CF equipped with a cold field emission gun and 1.2 Å spatial resolution and an Oxford X-max 100TLE windowless X-ray detector. A 22 mrad probe convergence angle was used to perform STEM. HAADF detector with 90 mrad inner-detector angle was utilized to obtain Z contrast images. Also to identify S atoms, ABF detector with 14 mrad collection angle was used. Sample preparation was done by transferring CVD grown doped and undoped samples into IPA solution. After sonication for 20 min, solution was drop casted onto the lacy carbon TEM grid. Sample was lamped for another 20 min before loading to JEOL double tilt holder. Crystal Maker software was also used to generate schematic image of the crystalline structure.

Raman Characterization. The data are obtained with a HORIBA LabRAM HR Evolution confocal Raman microscope. The instrument was configured with a 532 nm laser source, 1200 g/mm grating, a Horiba Andor detector, and a 100x objective. Laser powers at the sample were between 1 and 15 mW. Acquisition time, averaging parameters, and ND filters were optimized for the best signal-to-noise ratio.

Atomic Forced Microscopy (AFM) characterization. Experiments carried out using Bruker-Nano AFM instrument. Samples were carefully washed by acetone and IPA before experiment to remove any impurity. Root mean square roughness (Rq) of the doped and undoped samples has been measured by Gwyddion software.

Electrochemical Methods. All electrochemical experiments were performed by a two-compartment three-electrode electrochemical cell to perform CO$_2$ reduction reaction. Platinum (Pt) gauze 52 mesh (Alfa Aesar) and Ag/AgCl (BASi) were used as counter and reference electrodes, respectively. The cathode and anode part of the cell were separated through ion exchange membrane to eliminate the effect of product oxidation at the anode surface. A pure CO$_2$ gas (99.99%) Praxair) was bubbled into the 50 vol % IL solution (EMIM–BF$_4$ and water) for 30 min prior to each experiment. The cell was connected to the potentiostat (CH Instruments) for electrolysis characterization. Product characterization was carried out using an SRI 8610C GC system equipped with 72 × 18 in. S.S. molecular sieve-packed column and a thermal conductivity detector. Ultrahigh-purity helium and nitrogen gases (purchased from Praxair) were used as the carrier gas for CO and H$_2$ detection, respectively. For product characterization, chronoamperometry measurements have been performed for a desired duration of time (~15 min), and 1 mL samples were taken out from the dead volume of the cell using a lock-in syringe (Hamilton) and injected into the gas chromatography system under identical conditions. Faradaic efficiency measurements were calculated based on the mole fractions of injected samples corresponding to calibration curves and applied potential (details of faradic efficiency measurements are presented in SI, Section S7).

Differential Electrochemical Mass Spectrometry (DEMS) Measurements. The DEMS experiment was performed with a quadrupole detector purchased from (Hiden Analytical Inc.). A two-compartment three-electrode cell was designed with the total volume of 20 cc for a better detection of evolved products. The cell was carefully sealed with rubber septa and sealant before each experiment. The pure CO$_2$ (99.99%) was continuously bubbled into the IL electrolyte. A magnet bar has been used to stir the electrolyte to avoid the effect of mass transfer. The head space volume was about 8 mL during the experiment. The cell was under ultrahigh-vacuum pressure (1 × 10$^{-4}$ Torr) during the mass spectroscopy analysis. The product stream was injected from head space of the cell to the DEMS using quartz coated very low flow capillary line. The potential was swept between +0.6 to −0.8 V vs RHE with the scan rate of 1 mV/s to provide enough time for measuring pressure fluctuations in the chamber. The variation of CO partial pressure was then monitored to detect any product formation during the applied potential.

Density Functional Theory (DFT) Details. Periodic DFT calculations were performed using the PBE functional with plane wave basis sets in VASP package. Single-layer nanoribbons of the TMDCs with zigzag edges were constructed to mimic the nanostructures for the reaction free energies calculations. For the nanoribbons, each unit cell includes 8 × 1 atoms and 16 S atoms, containing both the metal and the S edges. A 15 Å vacuum space is set both on top of the metal edge and between two nanoribbon periodic images. A kinetic energy cutoff of 400 eV was used for all the calculations, and K-points grids of 3 × 1 × 1 were used for the energy calculations of the nanoribbons. Γ-point was used for gas-phase molecules. All the calculations involving the nanoribbons are spin-polarized calculations.

ACS Nano XXXX, XXX, XXX–XXX

DOI: 10.1021/acs.nanolett.6b06392
REFERENCES

